Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Psychiatry ; 14: 1057221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252131

RESUMO

Introduction: The M50 electrophysiological auditory evoked response time can be measured at the superior temporal gyrus with magnetoencephalography (MEG) and its latency is related to the conduction velocity of auditory input passing from ear to auditory cortex. In children with autism spectrum disorder (ASD) and certain genetic disorders such as XYY syndrome, the auditory M50 latency has been observed to be elongated (slowed). Methods: The goal of this study is to use neuroimaging (diffusion MR and GABA MRS) measures to predict auditory conduction velocity in typically developing (TD) children and children with autism ASD and XYY syndrome. Results: Non-linear TD support vector regression modeling methods accounted for considerably more M50 latency variance than linear models, likely due to the non-linear dependence on neuroimaging factors such as GABA MRS. While SVR models accounted for ~80% of the M50 latency variance in TD and the genetically homogenous XYY syndrome, a similar approach only accounted for ~20% of the M50 latency variance in ASD, implicating the insufficiency of diffusion MR, GABA MRS, and age factors alone. Biologically based stratification of ASD was performed by assessing the conformance of the ASD population to the TD SVR model and identifying a sub-population of children with unexpectedly long M50 latency. Discussion: Multimodal integration of neuroimaging data can help build a mechanistic understanding of brain connectivity. The unexplained M50 latency variance in ASD motivates future hypothesis generation and testing of other contributing biological factors.

2.
Neuroimage ; 275: 120163, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178820

RESUMO

The infant auditory system rapidly matures across the first years of life, with a primary goal of obtaining ever-more-accurate real-time representations of the external world. Our understanding of how left and right auditory cortex neural processes develop during infancy, however, is meager, with few studies having the statistical power to detect potential hemisphere and sex differences in primary/secondary auditory cortex maturation. Using infant magnetoencephalography (MEG) and a cross-sectional study design, left and right auditory cortex P2m responses to pure tones were examined in 114 typically developing infants and toddlers (66 males, 2 to 24 months). Non-linear maturation of P2m latency was observed, with P2m latencies decreasing rapidly as a function of age during the first year of life, followed by slower changes between 12 and 24 months. Whereas in younger infants auditory tones were encoded more slowly in the left than right hemisphere, similar left and right P2m latencies were observed by ∼21 months of age due to faster maturation rate in the left than right hemisphere. No sex differences in the maturation of the P2m responses were observed. Finally, an earlier left than right hemisphere P2m latency predicted better language performance in older infants (12 to 24 months). Findings indicate the need to consider hemisphere when examining the maturation of auditory cortex neural activity in infants and toddlers and show that the pattern of left-right hemisphere P2m maturation is associated with language performance.


Assuntos
Córtex Auditivo , Masculino , Humanos , Lactente , Idoso , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estudos Transversais , Magnetoencefalografia , Estimulação Acústica
3.
Psychophysiology ; 60(6): e14285, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929476

RESUMO

In a relaxed and awake state with the eyes closed, 8-12 Hz neural oscillations are the dominant rhythm, most prominent in parietal-occipital regions. Resting-state (RS) alpha is associated with processing speed and is also thought to be central to how networks process information. Unfortunately, the RS eyes-closed (EC) exam can only be used with individuals who can remain awake with their eyes closed for an extended period. As such, infants, toddlers, and individuals with intellectual disabilities are usually excluded from RS alpha studies. Previous research suggests obtaining RS alpha measures in a dark room with the eyes open as a viable alternative to the traditional RS EC exam. To further explore this, RS EC and RS dark room (DR) eyes-open alpha activity was recorded using magnetoencephalography in children with typical development (TD; N = 37) and children with autism spectrum disorder (ASD; N = 30) 6.9-12.6 years old. Findings showed good reliability for the RS EC and DR peak alpha frequency (frequency with strongest alpha power; interclass correlation (ICC) = 0.83). ICCs for posterior alpha power were slightly lower (ICCs in the 0.70 s), with an ~ 5% reduction in posterior alpha power in the DR than EC condition. No differences in the EC and DR associations were observed between the TD and ASD groups. Finally, age was associated with both EC and DR peak alpha frequency. Findings thus indicate the DR exam as a viable way to obtain RS alpha measures in populations frequently excluded from electrophysiology RS studies.


Assuntos
Transtorno do Espectro Autista , Lactente , Humanos , Criança , Reprodutibilidade dos Testes , Magnetoencefalografia , Lobo Occipital , Lobo Parietal
4.
J Autism Dev Disord ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932271

RESUMO

Resting-state alpha brain rhythms provide a foundation for basic as well as higher-order brain processes. Research suggests atypical maturation of the peak frequency of resting-state alpha activity (= PAF) in autism spectrum disorder (ASD). The present study examined resting-state alpha activity in young school-aged children, obtaining magnetoencephalographic (MEG) eyes-closed resting-state data from 47 typically developing (TD) males and 45 ASD males 6.0 to 9.3 years old. Results confirmed a higher PAF in ASD versus TD, and demonstrated that alpha power differences between groups were linked to the shift of PAF in ASD. Additionally, a higher PAF was associated with better cognitive performance in TD but not ASD. Finding thus suggested functional consequences of group differences in resting-state alpha activity.

5.
J Autism Dev Disord ; 53(10): 4076-4089, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35960416

RESUMO

Maturation of auditory cortex neural encoding processes was assessed in children with typical development (TD) and autism. Children 6-9 years old were enrolled at Time 1 (T1), with follow-up data obtained ~ 18 months later at Time 2 (T2), and ~ 36 months later at Time 3 (T3). Findings suggested an initial period of rapid auditory cortex maturation in autism, earlier than TD (prior to and surrounding the T1 exam), followed by a period of faster maturation in TD than autism (T1-T3). As a result of group maturation differences, post-stimulus group differences were observed at T1 but not T3. In contrast, stronger pre-stimulus activity in autism than TD was found at all time points, indicating this brain measure is stable across time.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Criança , Pré-Escolar , Potenciais Evocados Auditivos , Estimulação Acústica , Magnetoencefalografia
6.
J Autism Dev Disord ; 52(1): 103-112, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33629214

RESUMO

Associations between age, resting-state (RS) peak-alpha-frequency (PAF = frequency showing largest amplitude alpha activity), and thalamic volume (thalamus thought to modulate alpha activity) were examined to understand differences in RS alpha activity between children with autism spectrum disorder (ASD) and typically-developing children (TDC) noted in prior studies. RS MEG and structural-MRI data were obtained from 51 ASD and 70 TDC 6- to 18-year-old males. PAF and thalamic volume maturation were observed in TDC but not ASD. Although PAF was associated with right thalamic volume in TDC (R2 = 0.12, p = 0.01) but not ASD (R2 = 0.01, p = 0.35), this group difference was not large enough to reach significance. Findings thus showed unusual maturation of brain function and structure in ASD as well as an across-group thalamic contribution to alpha rhythms.


Assuntos
Transtorno do Espectro Autista , Adolescente , Encéfalo , Criança , Humanos , Imageamento por Ressonância Magnética , Masculino , Tálamo/diagnóstico por imagem
7.
Neuroreport ; 32(7): 541-547, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33850088

RESUMO

BACKGROUND: 47,XYY syndrome (XYY) is a male sex chromosome disorder where subjects have one X chromosome and two copies of the Y chromosome. XYY is associated with a physical phenotype and carries increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Imbalance of excitation and inhibition has been proposed as a putative biological basis of disorders such as ASD [1-3] and several studies have reported atypical brain γ-aminobutyric acid (GABA) levels in this population. Given the male preponderance in the prevalence of ASD, the unique presence of the Y chromosome in males leads to the intriguing possibility of investigating boys with XYY syndrome as a model of excess Y-chromosome genes. METHOD: In this study, we investigated the associations of genotype and clinical phenotype with levels of GABA, estimated by regionally localized edited magnetic resonance spectroscopy in boys with 47, XYY syndrome compared to age-matched typically developing (XY) peers. RESULTS: Overall, we observed a decrease in GABA levels in XYY vs. XY, which appeared more significant in the left compared to the right hemisphere. There was no additional significant modulation of GABA levels in XYY according to presence/absence of ASD diagnosis. Interestingly, a positive correlation between bilateral GABA levels and testosterone levels was observed in pubescent XY boys that was not observed in XYY. CONCLUSION: The inhibitory neurotransmitter GABA appears to be reduced in boys with 47,XYY, especially in the left hemisphere. Further, the typical association between GABA and testosterone levels, observed in older typically developing control boys was not evident in boys with 47,XYY.


Assuntos
Transtornos dos Cromossomos Sexuais/metabolismo , Lobo Temporal/metabolismo , Cariótipo XYY/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adolescente , Criança , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Transtornos dos Cromossomos Sexuais/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Cariótipo XYY/diagnóstico por imagem
8.
Front Hum Neurosci ; 15: 787229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975438

RESUMO

Prevailing theories of the neural basis of at least a subset of individuals with autism spectrum disorder (ASD) include an imbalance of excitatory and inhibitory neurotransmission. These circuitry imbalances are commonly probed in adults using auditory steady-state responses (ASSR, driven at 40 Hz) to elicit coherent electrophysiological responses (EEG/MEG) from intact circuitry. Challenges to the ASSR methodology occur during development, where the optimal ASSR driving frequency may be unknown. An alternative approach (more agnostic to driving frequency) is the amplitude-modulated (AM) sweep in which the amplitude of a tone (with carrier frequency 500 Hz) is modulated as a sweep from 10 to 100 Hz over the course of ∼15 s. Phase synchrony of evoked responses, measured via intra-trial coherence, is recorded (by EEG or MEG) as a function of frequency. We applied such AM sweep stimuli bilaterally to 40 typically developing and 80 children with ASD, aged 6-18 years. Diagnoses were confirmed by DSM-5 criteria as well as autism diagnostic observation schedule (ADOS) observational assessment. Stimuli were presented binaurally during MEG recording and consisted of 20 AM swept stimuli (500 Hz carrier; sweep 10-100 Hz up and down) with a duration of ∼30 s each. Peak intra-trial coherence values and peak response frequencies of source modeled responses (auditory cortex) were examined. First, the phase synchrony or inter-trial coherence (ITC) of the ASSR is diminished in ASD; second, hemispheric bias in the ASSR, observed in typical development (TD), is maintained in ASD, and third, that the frequency at which the peak response is obtained varies on an individual basis, in part dependent on age, and with altered developmental trajectories in ASD vs. TD. Finally, there appears an association between auditory steady-state phase synchrony (taken as a proxy of neuronal circuitry integrity) and clinical assessment of language ability/impairment. We concluded that (1) the AM sweep stimulus provides a mechanism for probing ASSR in an unbiased fashion, during developmental maturation of peak response frequency, (2) peak frequencies vary, in part due to developmental age, and importantly, (3) ITC at this peak frequency is diminished in ASD, with the degree of ITC disturbance related to clinically assessed language impairment.

9.
Front Psychiatry ; 11: 584557, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329127

RESUMO

Functional brain markers that can inform research on brain abnormalities, and especially those ready to facilitate clinical work on such abnormalities, will need to show not only considerable sensitivity and specificity but enough consistency with respect to developmental course that their validity in individual cases can be trusted. A challenge to establishing such markers may be individual differences in developmental course. The present study examined auditory cortex activity in children at an age when developmental changes to the auditory cortex 50 ms (M50) and 100 ms (M100) components are prominent to better understand the use of auditory markers in pediatric clinical research. MEG auditory encoding measures (auditory evoked fields in response to pure tone stimuli) were obtained from 15 typically developing children 6-8 years old, with measures repeated 18 and 36 months after the initial exam. MEG analyses were conducted in source space (i.e., brain location), with M50 and M100 sources identified in left and right primary/secondary auditory cortex (Heschl's gyrus). A left and right M50 response was observed at all times (Time 1, Time 2, Time 3), with M50 latency (collapsing across hemisphere) at Time 3 (77 ms) 10 ms earlier than Time 1 (87 ms; p < 0.001) and with M50 responses on average (collapsing across time) 5 ms earlier in the right (80 ms) than left hemisphere (85 ms; p < 0.05). In the majority of children, however, M50 latency changes were not constant across the three-year period; for example, whereas in some children a ~10 ms latency reduction was observed from Time 1 to Time 2, in other children a ~10 ms latency reduction was observed from Time 2 to Time 3. M100 responses were defined by a significant "peak" of detected power with magnetic field topography opposite M50 and occurring 50-100 ms later than the M50. Although M100s were observed in a few children at Time 1 and Time 2 (and more often in the right than left hemisphere), M100s were not observed in the majority of children except in the right hemisphere at Time 3. In sum, longitudinal findings showed large between- and within-subject variability in rate of change as well as time to reach neural developmental milestones (e.g., presence of a detectable M100 response). Findings also demonstrated the need to examine whole-brain activity, given hemisphere differences in the rate of auditory cortex maturation. Pediatric research will need to take such normal variability into account when seeking clinical auditory markers.

10.
Autism Res ; 13(10): 1730-1745, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32924333

RESUMO

This multimodal imaging study used magnetoencephalography, diffusion magnetic resonance imaging (MRI), and gamma-aminobutyric acid (GABA) magnetic resonance spectroscopy (MRS) to identify and contrast the multiple physiological mechanisms associated with auditory processing efficiency in typically developing (TD) children and children with autism spectrum disorder (ASD). Efficient transmission of auditory input between the ear and auditory cortex is necessary for rapid encoding of auditory sensory information. It was hypothesized that the M50 auditory evoked response latency would be modulated by white matter microstructure (indexed by diffusion MRI) and by tonic inhibition (indexed by GABA MRS). Participants were 77 children diagnosed with ASD and 40 TD controls aged 7-17 years. A model of M50 latency with auditory radiation fractional anisotropy and age as independent variables was able to predict 52% of M50 latency variance in TD children, but only 12% of variance in ASD. The ASD group exhibited altered patterns of M50 latency modulation characterized by both higher variance and deviation from the expected structure-function relationship established with the TD group. The TD M50 latency model was used to identify a subpopulation of ASD who are significant "outliers" to the TD model. The ASD outlier group exhibited unexpectedly long M50 latencies in conjunction with significantly lower GABA levels. These findings indicate the dependence of electrophysiologic sensory response latency on underlying microstructure (white matter) and neurochemistry (synaptic activity). This study demonstrates the use of biologically based measures to stratify ASD according to their brain-level "building blocks" as an alternative to their behavioral phenotype. LAY SUMMARY: Children with ASD often have a slower brain response when hearing sounds. This study used multiple brain imaging techniques to examine the structural and neurochemical factors which control the brain's response time to auditory tones in children with ASD and TD children. The relationship between brain imaging measures and brain response time was also used to identify ASD subgroups. Autism Res 2020, 13: 1730-1745. © 2020 International Society for Autism Research and Wiley Periodicals LLC.


Assuntos
Transtorno do Espectro Autista , Estimulação Acústica , Adolescente , Córtex Auditivo/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Criança , Potenciais Evocados Auditivos , Humanos , Magnetoencefalografia
11.
Artigo em Inglês | MEDLINE | ID: mdl-32033921

RESUMO

BACKGROUND: Individuals with either deletion or duplication of the BP4-BP5 segment of chromosome 16p11.2 have varied behavioral phenotypes that may include autistic features, mild to moderate intellectual disability, and/or language impairment. However, the neurophysiological correlates of auditory language discrimination processing in individuals with 16p11.2 deletion and 16p11.2 duplication have not been investigated. METHODS: Magnetoencephalography was used to measure magnetic mismatch fields (MMFs) arising from the left and right superior temporal gyrus during an auditory oddball paradigm with vowel stimuli (/a/ and /u/) in children and adolescents with 16p11.2 deletion or 16p11.2 duplication and in typically developing peers. One hundred twenty-eight participants ranging from 7 to 17 years of age were included in the final analysis (typically developing: n = 61, 12.08 ± 2.50 years of age; 16p11.2 deletion: n = 45, 11.28 ± 2.51 years of age; and 16p11.2 duplication: n = 22, 10.73 ± 2.49 years of age). RESULTS: Delayed MMF latencies were found in both 16p11.2 deletion and 16p11.2 duplication groups compared with typically developing subjects. In addition, these delayed MMF latencies were associated with language and cognitive ability, with prolonged latency predicting greater impairment. CONCLUSIONS: Our findings suggest that auditory MMF response delays are associated with clinical severity of language and cognitive impairment in individuals with either 16p11.2 deletion or 16p11.2 duplication, indicating a correlate of their shared/overlapping behavioral phenotype (and not a correlate of gene dosage).


Assuntos
Deleção Cromossômica , Adolescente , Percepção Auditiva , Criança , Cromossomos Humanos Par 16 , Disfunção Cognitiva , Humanos , Deficiência Intelectual/genética , Magnetoencefalografia
12.
Neuroimage ; 207: 116349, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31726253

RESUMO

Autism spectrum disorder (ASD) is primarily characterized by impairments in social communication and the appearance of repetitive behaviors with restricted interests. Increasingly, evidence also points to a general deficit of motor tone and coordination in children and adults with ASD; yet the neural basis of motor functional impairment in ASD remains poorly characterized. In this study, we used magnetoencephalography (MEG) to (1) assess potential group differences between typically developing (TD) and ASD participants in motor cortical oscillatory activity observed on a simple button-press task and (2) to do so over a sufficiently broad age-range so as to capture age-dependent changes associated with development. Event-related desynchronization was evaluated in Mu (8-13 Hz) and Beta (15-30 Hz) frequency bands (Mu-ERD, Beta-ERD). In addition, post-movement Beta rebound (PMBR), and movement-related gamma (60-90 Hz) synchrony (MRGS) were also assessed in a cohort of 123 participants (63 typically developing (TD) and 59 with ASD) ranging in age from 8 to 24.9 years. We observed significant age-dependent linear trends in Beta-ERD and MRGS power with age for both TD and ASD groups; which did not differ significantly between groups. However, for PMBR, in addition to a significant effect of age, we also observed a significant reduction in PMBR power in the ASD group (p < 0.05). Post-hoc tests showed that this omnibus group difference was driven by the older cohort of children >13.2 years (p < 0.001) and this group difference was not observed when assessing PMBR activity for the younger PMBR groups (ages 8-13.2 years; p = 0.48). Moreover, for the older ASD cohort, hierarchical regression showed a significant relationship between PMBR activity and clinical scores of ASD severity (Social Responsiveness Scale (SRS T scores)), after regressing out the effect of age (p < 0.05). Our results show substantial age-dependent changes in motor cortical oscillations (Beta-ERD and MRGS) occur for both TD and ASD children and diverge only for PMBR, and most significantly for older adolescents and adults with ASD. While the functional significance of PMBR and reduced PMBR signaling remains to be fully elucidated, these results underscore the importance of considering age as a factor when assessing motor cortical oscillations and group differences in children with ASD.


Assuntos
Fatores Etários , Transtorno do Espectro Autista/fisiopatologia , Cognição/fisiologia , Córtex Motor/fisiopatologia , Adolescente , Ritmo beta/fisiologia , Criança , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Movimento/fisiologia , Adulto Jovem
13.
Front Integr Neurosci ; 13: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866839

RESUMO

Several electrophysiological parameters, including the auditory evoked response component M50/M100 latencies and the phase synchrony of transient and steady-state gamma-band oscillations have been implicated as atypical (to various extents) in autism spectrum disorder (ASD). Furthermore, some hypotheses suggest that an underlying neurobiological mechanism for these observations might be atypical local circuit function indexed by atypical levels of inhibitory neurotransmitter, GABA. This study was a randomized, placebo-controlled, double-blind, escalating-dose, acute investigation conducted in 25 14-18 year-old adolescents with ASD. The study assessed the sensitivity of magnetoencephalography (MEG) and MEGAPRESS "GABA" magnetic resonance spectroscopy (MRS) to monitor dose-dependent acute effects, as well as seeking to define properties of the pre-drug "baseline" electrophysiological and GABA signatures that might predict responsiveness to the GABA-B agonist, arbaclofen (STX-209). Overall, GABA levels and gamma-band oscillatory activity showed no acute changes at either low (15 mg) or high (30 mg) dose. Evoked M50 response latency measures tended to shorten (normalize), but there was heterogeneity across the group in M50 latency response, with only a subset of participants (n = 6) showing significant M50 latency shortening, and only at the 15 mg dose. Findings thus suggest that MEG M50 latency measures show acute effects of arbaclofen administration in select individuals, perhaps reflecting effective target engagement. Whether these subjects have a greater trend towards clinical benefit remains to be established. Finally, findings also provide preliminary support for the use of objective electrophysiological measures upon which to base inclusion for optimal enrichment of populations to be included in full-scale clinical trials of arbaclofen.

14.
Mol Autism ; 10: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428297

RESUMO

Abnormal auditory neuromagnetic M50 and M100 responses, reflecting primary/secondary auditory cortex processing, have been reported in children who have autism spectrum disorder (ASD). Some studies have reported an association between delays in these responses and language impairment. However, as most prior research has focused on verbal individuals with ASD without cognitive impairment, rather little is known about neural activity during auditory processing in minimally verbal or nonverbal children who have ASD (ASD-MVNV)-children with little or no speech and often significant cognitive impairment. To understand the neurophysiological mechanisms underlying auditory processing in ASD-MVNV children, magnetoencephalography (MEG) measured M50 and M100 responses arising from left and right superior temporal gyri during tone stimuli in three cohorts: (1) MVNV children who have ASD (ASD-MVNV), (2) verbal children who have ASD and no intellectual disability (ASD-V), and (3) typically developing (TD) children. One hundred and five participants (8-12 years) were included in the final analyses (ASD-MVNV: n = 16, 9.85 ± 1.32 years; ASD-V: n = 55, 10.64 ± 1.31 years; TD: n = 34, 10.18 ± 1.36 years). ASD-MVNV children showed significantly delayed M50 and M100 latencies compared to TD. These delays tended to be greater than the corresponding delays in verbal children with ASD. Across cohorts, delayed latencies were associated with language and communication skills, assessed by the Vineland Adaptive Behavior Scale Communication Domain. Findings suggest that auditory cortex neural activity measures could be dimensional objective indices of language impairment in ASD for either diagnostic (e.g., via threshold or cutoff) or prognostic (considering the continuous variable) use.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Tempo de Reação/fisiologia , Estimulação Acústica , Criança , Feminino , Humanos , Masculino , Lobo Temporal/fisiopatologia
15.
Dev Neurosci ; 41(1-2): 123-131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31280271

RESUMO

47,XYY syndrome (XYY) is one of the common forms of sex chromosome aneuploidy in males. XYY males tend to have tall stature, early speech, motor delays, social and behavioral challenges, and a high rate of language impairment. Recent studies indicate that 20-40% of males with XYY meet diagnostic criteria for autism spectrum disorder (ASD; the rate in the general population is 1-2%). Although many studies have examined the neural correlates of language impairment in ASD, few similar studies have been conducted on individuals with XYY. Studies using magnetoencephalography (MEG) in idiopathic ASD (ASD-I) have demonstrated delayed neurophysiological responses to changes in the auditory stream, revealed in the mismatch negativity or its magnetic counterpart, the mismatch field (MMF). This study investigated whether similar findings are observed in XYY-associated ASD and whether delayed processing is also present in individuals with XYY without ASD. MEG measured MMFs arising from the left and the right superior temporal gyrus during an auditory oddball paradigm with vowel stimuli (/a/ and /u/) in children/adolescents with XYY both with and without a diagnosis of ASD, as well as in those with ASD-I and in typically developing controls (TD). Ninety male participants (6-17 years old) were included in the final analyses (TD, n = 38, 11.50 ± 2.88 years; ASD-I, n = 21, 13.83 ± 3.25 years; XYY without ASD, n = 15, 12.65 ± 3.91 years; XYY with ASD, n = 16, 12.62 ± 3.19 years). The groups did not differ significantly in age (p > 0.05). There was a main effect of group on MMF latency (p < 0.001). Delayed MMF latencies were found in participants with XYY both with and without an ASD diagnosis, as well as in the ASD-I group compared to the TD group (ps < 0.001). Furthermore, participants with XYY (with and without ASD) showed a longer MMF latency than the ASD-I group (ps < 0.001). There was, however, no significant difference in MMF latency between individuals with XYY with ASD and those with XYY without ASD. Delayed MMF latencies were associated with severity of language impairment. Our findings suggest that auditory MMF latency delays are pronounced in this specific Y chromosome aneuploidy disorder, both with and without an ASD diagnosis, and thus may implicate the genes of the Y chromosome in mediating atypical MMF activity.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Transtornos dos Cromossomos Sexuais/fisiopatologia , Cariótipo XYY/fisiopatologia , Estimulação Acústica , Adolescente , Transtorno do Espectro Autista/etiologia , Criança , Humanos , Magnetoencefalografia , Masculino , Transtornos dos Cromossomos Sexuais/complicações
16.
Autism Res ; 12(8): 1225-1235, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136103

RESUMO

Abnormal auditory discrimination neural processes, indexed by mismatch fields (MMFs) recorded by magnetoencephalography (MEG), have been reported in verbal children with ASD. Association with clinical measures indicates that delayed MMF components are associated with poorer language and communication performance. At present, little is known about neural correlates of language and communication skills in extremely language impaired (minimally-verbal/non-verbal) children who have ASD: ASD-MVNV. It is hypothesized that MMF delays observed in language-impaired but nonetheless verbal children with ASD will be exacerbated in ASD-MVNV. The present study investigated this hypothesis, examining MMF responses bilaterally during an auditory oddball paradigm with vowel stimuli in ASD-MVNV, in a verbal ASD cohort without cognitive impairment and in typically developing (TD) children. The verbal ASD cohort without cognitive impairment was split into those demonstrating considerable language impairment (CELF core language index <85; "ASD-LI") versus those with less or no language impairment (CELF CLI >85; "ASD-V"). Eighty-four participants (8-12 years) were included in final analysis: ASD-MVNV: n = 9, 9.67 ± 1.41 years, ASD: n = 48, (ASD-V: n = 27, 10.55 ± 1.21 years, ASD-LI: n = 21, 10.67 ± 1.20 years) and TD: n = 27, 10.14 ± 1.38 years. Delayed MMF latencies were found bilaterally in ASD-MVNV compared to verbal ASD (both ASD-V and ASD-LI) and TD children. Delayed MMF responses were associated with diminished language and communication skills. Furthermore, whereas the TD children showed leftward lateralization of MMF amplitude, ASD-MVNV and verbal ASD (ASD-V and ASD-LI) showed abnormal rightward lateralization. Findings suggest delayed auditory discrimination processes and abnormal rightward laterality as objective markers of language/communication skills in both verbal and MVNV children who have ASD. Autism Res 2019, 12: 1225-1235. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain imaging showed abnormal auditory discrimination processes in minimally-verbal/non-verbal children (MVNV) who have autism spectrum disorder (ASD). Delays in auditory discrimination were associated with impaired language and communication skills. Findings suggest these auditory neural measures may be objective markers of language and communication skills in both verbal and, previously-understudied, MVNV children who have ASD.


Assuntos
Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/fisiopatologia , Transtornos da Comunicação/complicações , Transtornos da Comunicação/fisiopatologia , Estimulação Acústica/métodos , Criança , Estudos de Coortes , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Comunicação não Verbal
17.
J Autism Dev Disord ; 49(8): 3181-3190, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31069618

RESUMO

This study introduces an objective neurophysiological marker of language ability, the integral of event-related desynchronization in the 5-20 Hz band during 0.2-1 seconds post auditory stimulation with interleaved word/non-word tokens. This measure correlates with clinical assessment of language function in both ASD and neurotypical pediatric populations. The measure does not appear related to general cognitive ability nor autism symptom severity (beyond degree of language impairment). We suggest that this oscillatory brain activity indexes lexical search and thus increases with increased search in the mental lexicon. While specificity for language impairment in ASD remains to be determined, such an objective index has potential utility in low functioning individuals with ASD and young children during language acquisition.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Estimulação Acústica , Transtorno do Espectro Autista/complicações , Criança , Pré-Escolar , Sincronização Cortical , Potenciais Evocados , Feminino , Humanos , Desenvolvimento da Linguagem , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Magnetoencefalografia/métodos , Masculino
18.
Hum Brain Mapp ; 40(11): 3288-3298, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30977235

RESUMO

Age-related changes in resting-state (RS) neural rhythms in typically developing children (TDC) but not children with autism spectrum disorder (ASD) suggest that RS measures may be of clinical use in ASD only for certain ages. The study examined this issue via assessing RS peak alpha frequency (PAF), a measure previous studies, have indicated as abnormal in ASD. RS magnetoencephalographic (MEG) data were obtained from 141 TDC (6.13-17.70 years) and 204 ASD (6.07-17.93 years). A source model with 15 regional sources projected the raw MEG surface data into brain source space. PAF was identified in each participant from the source showing the largest amplitude alpha activity (7-13 Hz). Given sex differences in PAF in TDC (females > males) and relatively few females in both groups, group comparisons were conducted examining only male TDC (N = 121) and ASD (N = 183). Regressions showed significant group slope differences, with an age-related increase in PAF in TDC (R2 = 0.32) but not ASD (R2 = 0.01). Analyses examining male children below or above 10-years-old (median split) indicated group effects only in the younger TDC (8.90 Hz) and ASD (9.84 Hz; Cohen's d = 1.05). In the older ASD, a higher nonverbal IQ was associated with a higher PAF. In the younger TDC, a faster speed of processing was associated with a higher PAF. PAF as a marker for ASD depends on age, with a RS alpha marker of more interest in younger versus older children with ASD. Associations between PAF and cognitive ability were also found to be age and group specific.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Magnetoencefalografia , Adolescente , Transtorno do Espectro Autista/psicologia , Criança , Cognição/fisiologia , Feminino , Humanos , Masculino , Testes Neuropsicológicos
19.
Neuroreport ; 30(7): 504-509, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30896674

RESUMO

47,XYY syndrome (XYY) is a male sex chromosome disorder where individuals have an X chromosome and two copies of the Y chromosome. XYY is associated with a physical phenotype and carries increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD). Latencies of auditory evoked responses measured by magnetoencephalography have shown atypical prolongations in several neuropsychiatric and genetic disorders; specifically, delayed auditory responses have been observed in ASD. In this study, we investigated the associations of genotype and clinical phenotype with auditory processing. Whole cortex magnetoencephalography recorded during a passive auditory paradigm (500 Hz tones) was used to assess the auditory evoked response in three groups of male children: idiopathic ASD, typically developing, and XYY boys. Response waveforms were computed for left and right auditory cortex and latencies of the ∼50 ms (M50) and ∼100 ms (M100) components were determined. M50 latencies were significantly delayed compared with typically developing controls in children with ASD in the right hemisphere only, and in children with XYY in the left hemisphere only, irrespective of whether they met diagnostic criteria for ASD. Findings on the later M100 component trended in the same directions but did not attain significance, due to increased variance. Replicating previous findings, decreased M50 and M100 latencies with age were observed bilaterally. Overall, while XYY shares an electrophysiological phenotype (delayed evoked response latency) with idiopathic ASD, the hemispheric differences warrant further investigation.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Transtornos dos Cromossomos Sexuais/fisiopatologia , Cariótipo XYY/fisiopatologia , Adolescente , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/fisiopatologia , Criança , Humanos , Masculino , Transtornos dos Cromossomos Sexuais/complicações
20.
Brain Connect ; 9(5): 425-436, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900464

RESUMO

Studies suggest that individuals with autism spectrum disorder (ASD) exhibit altered electrophysiological alpha to gamma phase-amplitude coupling (PAC). Preliminary reports with small samples report conflicting findings regarding the directionality of the alpha to gamma PAC alterations in ASD. The present study examined resting-state activity throughout the brain in a relatively large sample of 119 children with ASD and 47 typically developing children. Children with ASD demonstrated regionally specific abnormalities in alpha to low-gamma PAC, with increased alpha to low-gamma PAC for a central midline source and decreased PAC at lateral sources. Group differences in local gamma-band power did not account for the regional group differences in alpha to low-gamma PAC. Moreover, local alpha power did not significantly modulate alpha to low-gamma PAC estimates. Finally, PAC estimates were correlated with Social Responsiveness Scale (SRS) indicating clinical relevance of the PAC metric. In conclusion, alpha to low-gamma PAC alterations in ASD demonstrate a heterogeneous spatial profile consistent with previous studies and were related to symptom severity.


Assuntos
Ritmo alfa/fisiologia , Transtorno do Espectro Autista/diagnóstico por imagem , Ritmo Gama/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Criança , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Vias Neurais/fisiologia , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...